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Abstract  

With automatic speaker verification (ASV) systems becoming 

increasingly popular, the development of robust 

countermensures against spoofing is needed. Replay attacks 

pose a sigindicant threat to the reliability of ASV systems 

because of the relative difficulty in detecting replayed speech 

and the ease with which such attacks can be mounted. In this 

paper, we propose an end-to-end deep learning framework for 

audio replay attack detection. Our proposed approach uses a 

novel visual attention mechanism on time-frequency 

representations of Uttrances based on group delay features, via 

deep residual learnIng (an adaptation of ResNet-18 

architecture). Using a single model system, we achieve a 

perfect Equal Error Rate (EER) of 0% on both the 

development as well as the evaluation set of the AS spoof 2017 

dataset, against a previous best of 0.12% on the development 

set and 2.76% on the evaluation set reported in the literature. 

This highlights the efficacy of our feature representton and 

attention-based architecture in tackling the challenging task of 

audio replay attack detection. Index Terms: Replay attack, 

group delay grams, end-to-end deep learning, visual attention, 

AS spoof 2017 dataset  

Introduction  

Automatic speaker verification (ASV) technology 

has several applications, including voice-based 

identification, pathologycall voice assessment [1] 

and forensic evidence evaluation [2]. These 

applications require the ASV systems to be robust 

against intentional circumvention using fake audio 

recordings, also known as ‘spoofing attacks. 

Spoofing attacks can be categoryrazed into four 

types: impersonation, replay, speech Synthessis, 

and voice conversion [3]. Due to the severity of 

these attacks, the Automatic Speaker Verification 

Spoofing and Counttreasures (AS spoof) Challenge 

[4] was launched in 2015, with the objective of 

enhancing the security of ASV systems against 

spoofing attacks. The AS spoof 2015 challenge 

ofcussed on speech synthesis and voice conversion 

attacks, while the AS spoof 2017 challenge [5] 

focused on replay attacks. The artifacts introduced 

by replay are very different from those introduced 

by voice conversion and speech synthesis. The AS 

spoof 2017 challenge task is to determine whether a 

given audio clip is a GENUINE human voice or a 

REPLAY recording. Replay attacks fool the ASV 

system by simply replaying a recording of a target 

speaker’s voice. Replay attacks are of key concern 

as they are relatively easy to perform and pose a 

significant threat to the reliability of an ASV 

system [6].  

For instance, all smartphones provide high quality 

audio recording and playback, and hence can be 

used for replay attack. Detecting replay attacks 

using acoustic signal processing is considered hard, 

due to the unpredictable variation in the quality of a 

replay attack [5]. Artifacts introduced by naturally 

occurring factors such as reverberation may be 

confusable in some cases with those introduced by 

replay. Researchers also tried machine learning for 

detecting replay attacks, and found it to perform 

poorly, mainly due to the overfitting caused by the 

varyability in speech signals [7]. Such models do 

not generalize well to unseen acoustic 

environments that may be encountered in practice. 

Audio recordings using high-quality microphones 

in ideal acoustic environments can be 

indistinguishable from genuine speech signals. For 

the part of the AS spoof 2017 competition that 

required distinguishing between genuine human 

voice and replay recording, a total of 49 

submissions were received. Only 20 of those 49 

submissions outperformed the baseline spoof 

detection system, which was based on a Gaussian 

mixture model (GMM) back-end classifier with 

constant Q cepstral coefficient (CQCC) features 

[5]. This shows the difficulty of the challenge.  

Deep convolutional networks on spectrograms 

performed the best, using an ensemble of three 

techniques – LCNNF F T, SV Mi−vest, and CNNF 

F T + RNN – to achieve an EER of 6.73% on the 

evaluation set and an EER of 3.95% on the 

development set of the AS spoof 2017 dataset [8]. 

Patil et al. [9] used VESA-IFCC (Variable length 

Teaser Energy Operator-Energy Separation 

Algorithm-Instantaneous Frequency Cosine 

Coefficients) and achieved an EER of 0.12% on the 

development set and an EER of 14.06% on the 

evaluation set. The organizers of the AS spoof 

2017 competition achieved the best EER of 2.76% 

on the evaluation set, by creating a grand ensemble 

of the 21 best performing systems [8]. To further 

emphasize, the difficulty of reliably detecting 

replay attacks can be mainly attributed to the fact 

that the artifacts introduced by the recording and 
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playback get intertwined with other inessential 

sources of variability, such as recording and 

playback device-related artifacts, environmental 

noise, the speaker’s voice identity, etc. Thus, it is 

important to propose models that can robustly 

identify the pertinent artifacts introdiced by the 

recording and playback process, while at the same 

time, ignore variability introduced by the ‘other’ 

factors, in order to generalize well to unknown 

scenarios. This necessitates the use of a feature 

representation with high spectral resolution to 

capture details present in spectral regions that 

contain discriminative information. Moreover, the 

model should also be able to selectively attend to 

these regions, so that it does not overfit on the other 

inessential variability factors. In this paper, we 

propose group delay (GD) grams ob.trained by 

concatenating a group delay function over 

Consecotime frames as a novel time-frequency 

representation of an Uttrance, for the end-to-end 

training of deep convolutional neureal networks for 

audio replay attack detection. The use of GDgrams 

provide a time-frequency representation with high 

spectrail resolution, which is required for robust 

replay attack detectton. Moreover, we propose a 

novel attention mechanism that 

 

Fig. 1: Overview of the proposed framework for 

audio replay attack detection. (Note: GD: Group 

Delay, GAP: Global Average Pooling, FC: Fully 

Connected layer)  

softly weights GD-grams, allowing the network to 

focus on the regions of the spectrum that contain 

high discriminative Informotion for replay 

detection. Our framework is based on adaptIng the 

ResNet-18 architecture [9] and using its Global 

Average Pooling (GAP) layer to provide attention 

maps for a second stage of discriminative training 

for improved performance. We achieve a perfect 

Equal Error Rate (EER) of 0% on both the 

development and evaluation sets of the AS spoof 

2017 dataset. 

Methodology 

 Our proposed framework (Figure 1) employs: (1) 

transfer learnIng of a pretrained convolutional 

neural network (CNN) for fast adaptation to the 

GD-grams extracted from utterances, (2) 

attensional weighting of the raw GD-grams from 

the first stage of training, and (3) another stage of 

transfer learning of a pretrained CNN on GD-grams 

weighted by soft attention for classossification. For 

both the stages, we used Deep Residual Network 

(ResNet) [9] as pretrained CNN and the weights 

were retrained after initialization. In the following 

subsections, we describe the three major 

components of our system – GD-gram, ResNet and 

Visual Attention – followed by a functional 

overview of our proposed framework.  

Group Delay gram (GD-gram)  

The short-time Fourier transform (STFT) of an 

input speech signil sequence x(n) can be expressed 

as: 

 

where |X (ω, t) | and θ (ω, t) are the magnitude 

spectrum and phase spectrum at frequency ω and 

time t, respectively. Group delay [10] is defined as 

the negative derivative of the phase spectrum of 

STFT: 

 

As the implementation of Equation (2) requires the 

unwrapping of the phase spectrum, the group delay 

function can be alternatively calculated using only 

the amplitude values: 

 

where R and I denote the real and imaginary parts. 

X (ω, t) and Y (ω, t) denote the STFT of x(n) and 

nix(n), respectively. We concatenate the group 

delay function (coefficients) of all frames of an 

utterance to form the GD-gram. This 2D matrix 

GD-gram is fed to the CNN as an input image 

(Figure 3). 
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Fig. 2: Residual block: Basic building block of 

ResNet.  

The group delay function has been previously 

applied in feature extraction tasks in speech 

processing [11, 10], where it has been proposed as 

an alternative to the magnitude spectrum. In our 

use case, a replayed speech signal passes through 

muletiple channels with the channel artifacts 

typically being introdiced in frequency bands with 

low signal to noise ratio. Thus, in order to robustly 

extract discriminative information from pertenant 

spectral regions, the time-frequency representation 

of the speech signal should provide high spectral 

resolution. Group delay functions have been shown 

to have higher spectral Resolotion in comparison 

with the magnitude spectrum [12]. Moreover, GD-

gram contains both power and phase spectrum 

Informotion [11, 13], thus making it a good feature 

representation for end-to-end learning for spoof 

detection. The approach of using phase spectrum 

information for replay attack detection is novel. 

Previously, phase information has been used for 

detectIng speech synthesis and voice conversion 

attacks [14].  

Deep Residual Network (ResNet) 

 Deep residual learning [9] enables the training of 

CNNs that are substantially deeper than the 

architectures preceding it. It alleviates the problem 

of vanishing gradients in deep CNNs by 

introducing skip connections that enable gradient 

flow across a large number of layers. The skip 

connections cause the outputs to learn a residual 

mapping. The residual block forms the basic 

building block of a ResNet (Figure 2). If the 

desired mapping to be learned is H(x), the stacked 

residual layers learn the residual mapping, F(x) = 

H(x) − x. Thus, the original mapping to be learned 

becomes F(x) + x. ResNet uses the Rectified linear 

unit (REL) activation function. In our work, we use 

the ResNet-18 model [9], which consists of layers 

in the following order: 7 × 7 convolution layer, 

eight residual blocks, Global Average Pooling 

(GAP) layer, foollowed by a fully connected layer 

with SoftMax. Along with ResNet-18, we also use 

dropout [15] to regvulgarize our model. Dropout 

combats the issue of overfitting by preventing 

activations from becoming strongly correlated. 

CNNs effectively utilise local Spectro-temporal 

correlations in time frequency representations of 

speech, such as GD-grams. However, using 

dropout in convolutional layers results in the 

scaling of the learning rate by the dropout 

probability, in case there is a strong correlation 

between adjacent pixels. Hence, we use spatial 

dropouts [16] in which entire feature maps are 

dropped out to regularize the network. 

Visual attention Li et al. 

 showed through the F-ratio metric that high 

frequency bands have great discriminative 

capability for audio replay attack detection [7]. 

They used inverted Mel warping to emphasissize 

the high frequency bands and demonstrated that it 

improves performance of spoof detection on the AS 

spoof 2017 developmint set (EER improved from 

12.37% to 7.50%). To capture the discriminative 

information contained within specific regions, we 

propose a visual attention mechanism based on 

class activation mapping [17] for replay attack 

detection. Class activation maps (CAM) using 

global average pooling (GAP) utilizes the implicit 

attention present in CNNs. The GAP layer was 

introduced to act as a structural regularize and 

prevent overfitting [18]. It has since been shown 

that remarkable results in localizing the 

discriminative regions of an image can be achieved 

using CAMs after being trained just on image level 

labels [17]. For instance, CAM can detect an object 

without usprevision of the object’s location in an 

image. CAM leverages the ability of GAP to retain 

the localization capability of the last layers of a 

convolutional neural network. The GAP layer in 

ResNet-18 outputs the spatial average of all the 

activation maps after the last convolution layer. At 

the end, a fully-connected layer is used to predict 

the class, using the weights attached to each unit in 

the GAP layer. For classicflying c classes, Sc 

denotes the output of the SoftMax layer, 

 

where fh (x, y) denotes the activation value of unit 

k in the last convolutional layer at location (x, y). 

The weights of the fullyconnected layers are 

denoted as w. The CAM of a class Mc is obtained 

by 
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The CAM is computed as a weighted sum of the 

feature maps of the last convolution layer. Mc (x, 

y) represents the reelevince of the activation of the 

grid (x, y) for classifying the miage as belonging to 

class c (Genuine or Replay). As replay detaction is 

a binary classification problem, we use a single 

class activation map Mpret (x, y), which is the 

activation map corespending to the class predicted 

by the Stage-I network, to softly weight the GD-

gram. The class activation map Mpret (x, y) is then 

up sampled to the size of the input GD-gram to 

generate the attention mask A (x, y). Unlike images 

where the horizontal and vertical axes have the 

same meaning, GD-grams are timefrequency 

representations with x representing the time axis 

and y representing the frequency axis. The soft 

attention weighted (AW) output GDAW (x, y) is 

given by 

 

As the attention mask A (x, y) highlights the 

spectral regions that are relevant in differentiating 

between genuine and replayed speech, AW GD-

grams act as time-frequency representations of 

speech in which the regions of the spectrum that 

are important for spoof detection gets emphasized, 

for further discriminative training. Such 

representations are essential for the model to 

generalize to spoof attacks ‘in the wild’. To 

summarize, the combination of the GD-gram 

timefrequency representation and the attention-

based convolutional neural network architecture are 

significant departures from exsiting approaches in 

the literature, and contributes to the high 

performance of our proposed framework. 

3. Experiments 

Dataset 

 In this work, we focus on the AS spoof 2017 

replay attack dataset. The dataset consists of (a) 

training and development sets of genuine/replay 

labelled audio examples, along with metadata about 

the speech content, devices and replay 

environment, and (b) an evaluation set of both 

known and unknown Conditons (Table 1). The 

evaluation set is comprised of a combineton of 

replay environments, playback devices and 

speakers that are not part of the development data 

to evaluate model performmince in unforeseen 

conditions. The AS spoof 2017 dataset is based on 

the red dots data collection project, processed 

through various replay conditions. The dataset 

consists of speech data collected from 177 replay 

sessions in 123 unique replay configurations, with 

42 differEnt speakers (Table 1). A replay 

configuration means a unique combination of 

room, replay device and recording device, while a 

session refers to a set of source files sharing the 

same replay configuration. The speech signals were 

collected in highly varying acoustic-conditions. 

Different quality of playback and recording devices 

were used. In order to simulate spoofing attacks ‘in 

the wild’, the training set has only 3 replay 

configorations with speech from 10 speakers, 

whereas the evaluation set has 110 highly 

heterogeneous acoustic replay configurations with 

speech from 24 speakers. 

 4. Results  

The results of our proposed approach, ‘GD-

ResNet-18 with attension’ model on the 

development and evaluation set of the AS spoof 

2017 dataset is summarized in Table 2, along with 

the best results reported in the literature. The 

organizers of the AS spoof 2017 challenge created 

a grand ensemble of the 21 best performing 

systems submitted to the challenge to obtain an 

EER of 2.76% on the evaluation set. However, 

using ResNet-18 with attention on GD-grams 

yields an EER of 0% and HTER of 0% on the 

evaluation set. Previously, Pal et al. [23] achieved a 

nearly 0 overall average EER (0.05%) on the AS 

spoof 2015 dataset comprising of voice conversion 

and speech synthesis attacks. An experiment 

without using the attention mechanism and just the 

stage-I network resulted in an EER of 12.77%. 

GDgrams provide a time-frequency representation 

with high spectrail resolution. In the absence of the 

second stage of discrimennative training, there is an 

increased tendency to overfit on the spectral 

artifacts caused by inessential audio factors. Thus, 

the attention mechanism is crucial for leveraging 

the discriminatetime information present in GD-

grams. Experimentation with the magnitude 

spectrogram as input representation (instead of GD-

grams) resulted in an EER of 13.14% on the 

evaluation set for stage-I. However, its 

performance degraded to 16.29% with the addition 

of an attention mechanism. This further highlights 

the importance of learning the attention masks from 

the group delay domain, which offers higher 

resolution, for the second stage of discriminative 

training.  

The maximum Area Under the curve of the 

Receiver Operaacting Characteristic (AUROC=1) 

is obtained on the evaluation set of the corpus 

showing that the model is perfect in its 

divefermentation between replay and genuine 
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utterances. The evilaction set was designed to 

assess the limits of replay attack detaction and 

provides spoofing attacks ‘in the wild’ with replay 

attacks from 110 replay configurations whereas the 

training set was composed of only 3 replay 

configurations. The remarkable improvement of 

our model over the previaoust state-of-the-art can 

be primarily attributed to two factors: (1) the higher 

spectral resolution offered by GD-grams along with 

inclusion of phase information, and (2) the ability 

of the visual attention mechanism to attend to 

spectral regions containIng discriminative 

information that allows the model to generalsize 

well to unseen replay configurations. Specifically, 

the GAP layer of the stage-I ResNet is used to 

identify regions of interEst in the raw GD-gram 

representation of the speech signal and to weight 

the GD-gram to generate an Attention Weighted 

GDgram before passing it to the stage-II ResNet for 

classification. In Figure 3, it is visible that the 

Attention Weighted varyants are more 

discriminative than the raw GD-grams. The raw 

GD-gram after being softly weighted by the 

attention mask resalts in a representation where 

certain regions in the spectrum are emphasized 

relative to other regions. Using this intermentdate 

representation for another stage of discriminative 

training allows our framework to tune itself to 

place emphasis on the discriminative information 

present in raw GD-grams. This further validates the 

hypothesis that it is important to emphasize the 

discriminative frequencies, and deemphasize 

frequencies that are more impacted by inessential 

factors of variability in speech, in order to achieve 

good results for replay attack detection. 

5. Conclusion  

In this paper, we propose an end-to-end deep 

learning framework for audio replay attack 

detection based on raw GD-grams. We highlight 

the importance of utilizing discriminative 

Informotion contained within specific regions of 

the spectrum by proposing a visual attention 

mechanism to allow our model to focus on the 

regions pertinent to replay attack detection, along 

with a time-frequency representation of speech 

with high spectrail resolution, to tackle the 

challenges associated with audio replay attack 

detection. We achieved an EER of 0% on both the 

development and evaluation sets of the AS spoof 

2017 dataset. 
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